Econometrics I Lecture 5: Extended Example: The Wage Equation

Paul T. Scott NYU Stern

Fall 2021

Paul T. Scott NYU Stern

Econometrics I

Fall 2021 1 / 20

4 3 > 4 3

• Recall the Mincerian regression (wage equation):

$$\mathsf{In} \ \mathsf{wage}_i = \beta_0 + \beta_{ed} \mathsf{Edu}_i + \beta_{exp} \mathsf{Exp}_i + \beta_{Fem} \mathsf{Fem}_i + \cdots + \varepsilon_i$$

• Let's revisit estimating this with the Cornwell and Rupert data.

(4) (3) (4) (4) (4)

```
> suppressMessages(library(tidyverse))
Warning messages:
1: package 'tibble' was built under R version 3.4.3
2: package 'tiby' was built under R version 3.4.4
3: package 'unr' was built under R version 3.4.4
4: package 'forcats' was built under R version 3.4.4
5: package 'forcats' was built under R version 3.4.4
5: package 'docats' was built under R version 3.4.4
5: package 'docats' was built under R version 3.4.4
5: package 'docats' was built under R version 3.4.4
5: package 'docats' was built under R version 3.4.4
5: package 'docats' was built under R version 3.4.4
5: package 'docats' was built under R version 3.4.4
5: package 'docats' was built under R version 3.4.4
5: package 'docats' was built under R version 3.4.4
5: package 'docats' was built under R version 3.4.4
5: package 'docats' was built under R version 3.4.4
5: package 'docats' was built under R version 3.4.4
5: package 'docats' was built under R version 3.4.4
5: package 'docats' was built under R version 3.4.4
5: package 'docats' was built under R version 3.4.4
5: package 'docats' was built under R version 3.4.4
5: package 'docats' was built under R version 3.4.4
5: package 'docats' was built under R version 3.4.4
5: package 'docats' was built under R version 3.4.5
5: package 'docats' was built under R version 3.4.5
5: package 'docats' was built under R version 3.4.5
5: package 'docats' was built under R version 3.4.5
5: package 'docats' was built under R version 3.4.5
5: package 'docats' was built under R version 3.4.5
5: package 'docats' was built under R version 3.4.5
5: package 'docats' was built under R version 3.4.5
5: package 'docats' was built under R version 3.4.5
5: package 'docats' was built under R version 3.4.5
5: package 'docats' was built under R version 3.4.5
5: package 'docats' was built under R version 3.4.5
5: package 'docats' was built under R version 3.4.5
5: package 'docats' was built under R version 3.4.5
5: package 'docats' was built under R version 3.4.5
5: package 'docats' was built under R version 3.4.5
5: package
```

Call:

 $\label{eq:lmcformula} \mbox{Im} \mbox{LWAGE} ~ \mbox{ED} + \mbox{EXP} + \mbox{EXP2} + \mbox{WKS} + \mbox{OCC} + \mbox{SOUTH} + \mbox{SMSA} + \mbox{MS} + \mbox{FEM} + \mbox{UNION}, \mbox{data} = \mbox{data})$

Residuals:

Min	1Q	Median	3Q	Max
-2.2034	-0.2379	-0.0071	0.2327	2.1380

Coefficients:

	Estimate	Std. Error	t value	Pr(>ltl)	
(Intercept)	5.245e+00	7.170e-02	73.153	< 2e-16	***
ED	5.654e-02	2.612e-03	21.644	< 2e-16	***
EXP	4.045e-02	2.174e-03	18.605	< 2e-16	***
EXP2	-6.811e-04	4.783e-05	-14.242	< 2e-16	***
WKS	4.485e-03	1.090e-03	4.115	3.94e-05	***
000	-1.405e-01	1.472e-02	-9.544	< 2e-16	***
SOUTH	-7.210e-02	1.249e-02	-5.773	8.37e-09	***
SMSA	1.390e-01	1.207e-02	11.513	< 2e-16	***
MS	6.736e-02	2.063e-02	3.265	0.0011	**
FEM	-3.892e-01	2.518e-02	-15.457	< 2e-16	***
UNION	9.015e-02	1.289e-02	6.993	3.13e-12	***
Signif. cod	es: 0 '***'	0.001 '**	0.01 '	*' 0.05 '	.'0.1''1

Residual standard error: 0.3524 on 4154 degrees of freedom Multiple R-squared: 0.4183, Adjusted R-squared: 0.4169 F-statistic: 298.7 on 10 and 4154 DF, p-value: < 2.2e-16

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Call:

lm(formula = LWAGE ~ ED + EXP + EXP2 + WKS + OCC + SOUTH + SMSA + MS + FEM + UNION, data = data)

Residuals: Min 10 Median 30 Max -2.2034 -0.2379 -0.0071 0.2327 2.1380

Coefficients:

	Estimate	Std. Error	t value	Pr(>ltl)	
(Intercept)	5.245e+00	7.170e-02	73.153	< 2e-16	***
ED	5.654e-02	2.612e-03	21.644	< 2e-16	***
EXP	4.045e-02	2.174e-03	18.605	< 2e-16	***
EXP2	-6.811e-04	4.783e-05	-14.242	< 2e-16	***
WKS	4.485e-03	1.090e-03	4.115	3.94e-05	***
000	-1.405e-01	1.472e-02	-9.544	< 2e-16	***
SOUTH	-7.210e-02	1.249e-02	-5.773	8.37e-09	***
SMSA	1.390e-01	1.207e-02	11.513	< 2e-16	***
MS	6.736e-02	2.063e-02	3.265	0.0011	**
FEM	-3.892e-01	2.518e-02	-15.457	< 2e-16	***
UNION	9.015e-02	1.289e-02	6.993	3.13e-12	***
Signif. cod	es: 0 '***'	0.001 '**'	0.01 '*	° 0.05 '.	' 0.1 ' ' 1

Residual standard error: 0.3524 on 4154 degrees of freedom Multiple R-squared: 0.4183, Adjusted R-squared: 0.4169 F-statistic: 298.7 on 10 and 4154 DF, p-value: < 2.2e-16

< □ > < 同 > < 回 > < 回 > < 回 >

Note on interpreting effects with log dependent variable:

•
$$\exp(-.3892) = .6826$$

Relaxing Linear Effect of Education

```
 \begin{array}{l} \mathsf{deta} \leftarrow \mathsf{data} \; \mathsf{MSM} \; \mathsf{wutche(NOH = ifelse(ED \sim E, 1, 0), \\ \mathsf{SOME(ED = 12, 1, 0), } \\ \mathsf{HS} \; \mathsf{wirelse(ED = 12, 1, 0), } \\ \mathsf{HS} \; \mathsf{wirelse(ED = 12, 1, 0), } \\ \mathsf{HS} \; \mathsf{wirelse(ED = 12, 1, 0), } \\ \mathsf{HS} \; \mathsf{virelse(ED = 15, 1, 0), } \\ \mathsf{HS} \; \mathsf{COL} \; \mathsf{wirelse(ED = 15, 1, 0), } \\ \mathsf{HS} \; \mathsf{COL} \; \mathsf{wirelse(ED = 17, 1, 0), } \\ \mathsf{HS} \; \mathsf{data} \leftarrow \mathsf{data} \; \mathsf{MSM} \; \mathsf{wutche(SOM = NOHS + SOMEHS + 15), } \\ \mathsf{HS} \; \mathsf{SOMECOL} \; \mathsf{HOL} \; \mathsf{POST} \\ \mathsf{SOMECOL} \; \mathsf{HOL} \; \mathsf{POST} \\ \mathsf{SOMECOL} \; \mathsf{FOL} \; \mathsf{POST} \\ \mathsf{HS} \; \mathsf{SOMECOL} \; \mathsf{HOL} \; \mathsf{POST} \\ \mathsf{HS} \; \mathsf{SOMECOL} \; \mathsf{HOL} \; \mathsf{POST} \\ \mathsf{HS} \; \mathsf{SOMECOL} \; \mathsf{HOL} \; \mathsf{POST} \\ \mathsf{HS} \; \mathsf{HS} \; \mathsf{HS} \; \mathsf{HS} \; \mathsf{HS} \; \mathsf{HS} \\ \mathsf{HS} \; \mathsf{HS} \; \mathsf{HS} \; \mathsf{HS} \; \mathsf{HS} \\ \mathsf{HS} \; \mathsf{HS} \; \mathsf{HS} \; \mathsf{HS} \; \mathsf{HS} \\ \mathsf{HS} \; \mathsf{HS} \; \mathsf{HS} \; \mathsf{HS} \; \mathsf{HS} \; \mathsf{HS} \\ \mathsf{HS} \; \mathsf{HS} \; \mathsf{HS} \\ \mathsf{HS} \; \mathsf{HS} \; \mathsf{HS} \; \mathsf{HS} \\ \mathsf{HS} \; \mathsf{HS} \\ \mathsf{HS} \; \mathsf{HS} \; \mathsf{HS} \\ \mathsf{HS} \; \mathsf{HS} \\ \mathsf{HS} \; \mathsf{HS} \; \mathsf{HS} \\ \mathsf{HS} \; \mathsf{HS} \\ \mathsf{HS} \; \mathsf{HS} \\ \mathsf{HS} \; \mathsf{HS} \; \mathsf{HS} \\ \mathsf{HS} \; \mathsf{HS} \\ \mathsf{HS} \; \mathsf{HS} \; \mathsf{HS} \\ \mathsf{HS} \; \mathsf{HS} \\ \mathsf{HS} \; \mathsf{HS} \; \mathsf{HS} \\ \mathsf{HS} \; \mathsf{HS} \; \mathsf{HS} \\ \mathsf{HS} \; \mathsf{HS} \\ \mathsf{HS} \; \mathsf{HS} \; \mathsf{HS} \\ \mathsf{HS} \; \mathsf{HS} \; \mathsf{HS} \\ \mathsf{HS} \; \mathsf{HS} \\ \mathsf{HS} \; \mathsf{HS} \; \mathsf{HS} \\ \mathsf{HS} \; \mathsf{HS} \\ \mathsf{HS} \; \mathsf{HS} \; \mathsf{HS} \; \mathsf{HS} \\ \mathsf{HS} \; \mathsf{HS} \; \mathsf{HS} \; \mathsf{HS} \\ \mathsf{HS} \; \mathsf{HS} \; \mathsf{HS} \; \mathsf{HS} \; \mathsf{HS} \\ \mathsf{HS} \; \mathsf{HS} \; \mathsf{HS} \; \mathsf{HS} \; \mathsf{HS} \\ \mathsf{HS} \; \mathsf{HS} \; \mathsf{HS} \; \mathsf{HS} \; \mathsf{HS} \; \mathsf{HS} \\ \mathsf{HS} \; \mathsf{HS
```

 Note that we're missing a coefficient on one of the education categories.

Coefficient	s: (1 not de	fined becau	use of s	ingulariti	les)
	Estimate	Std. Error	t value	Pr(>ltl)	
	6.188e+00				
NOHS	-5.337e-01	2.947e-02	-18.108	< 2e-16	***
SOMEHS	-3.937e-01	2.496e-02	-15.776	< 2e-16	***
HS	-2.855e-01	2.106e-02	-13.554	< 2e-16	***
SOMECOL	-1.973e-01	2.214e-02	-8.912	< 2e-16	***
COL	-2.711e-02	2.127e-02	-1.274	0.202570	
POST	NA	NA	NA	NA	
	4.100e-02				
	-6.940e-04				
	4.599e-03				
	-1.386e-01				
SOUTH	-7.618e-02				
SMSA	1.436e-01				
MS	6.919e-02	2.070e-02	3.343	0.000837	***
FEM	-3.819e-01	2.532e-02			
UNION	9.402e-02	1.300e-02	7.235	5.52e-13	***
Signif. cod	es: 0 '***'	0.001 '**	° 0.01 '	*' 0.05'.	. 0.1 ' ' 1

Residual standard error: 0.3529 on 4150 degrees of freedom Multiple R-squared: 0.4174, Adjusted R-squared: 0.4154 F-statistic: 212.4 on 14 and 4150 DF, p-value: < 2.2e-16

< □ > < 同 > < 回 > < 回 > < 回 >

```
> # regression with categories, dropping one

> reg_3 <- lm(LWAGE ~ SOMEHS + HS + SOMECOL + COL

+ POST + EXP + EXP2 + WKS + OCC + SOUTH + SMSA

+ MS + FEM + UNION, data = data)

> summary(reg_3)
```

Coefficients:

	Estimate	Std. Error	t value	Pr(>ltl)	
(Intercept)	5.655e+00	6.342e-02	89.170	< 2e-16	***
SOMEHS		2.485e-02			
HS	2.482e-01	2.292e-02	10.827	< 2e-16	***
SOMECOL	3.364e-01	2.679e-02			
COL	5.066e-01	2.835e-02		< 2e-16	
POST	5.337e-01	2.947e-02		< 2e-16	
EXP	4.100e-02			< 2e-16	
EXP2	-6.940e-04				
WKS		1.103e-03			
0CC	-1.386e-01				
SOUTH	-7.618e-02				
SMSA		1.211e-02			
MS		2.070e-02			
FEM	-3.819e-01	2.532e-02			
UNION	9.402e-02	1.300e-02	7.235	5.52e-13	***
Signif. code	es: 0 '***'	0.001 '**'	' 0.01 ''	*' 0.05'	.'0.1''1

Residual standard error: 0.3529 on 4150 degrees of freedom Multiple R-squared: 0.4174, Adjusted R-squared: 0.4154 F-statistic: 212.4 on 14 and 4150 DF, p-value: < 2.2e-16

イロト イボト イヨト イヨト

Coefficients:

	Estimate	Std. Error	t value	Pr(>ltl)				
NOHS	5.655e+00	6.342e-02	89.170	< 2e-16	***			
SOMEHS	5.795e+00	6.240e-02	92.864	< 2e-16	***			
HS	5.903e+00	6.095e-02	96.855	< 2e-16	***			
SOMECOL	5.991e+00	6.096e-02	98.276	< 2e-16	***			
COL	6.161e+00	5.966e-02	103.268	< 2e-16	***			
POST	6.188e+00	5.888e-02	105.112	< 2e-16	***			
EXP	4.100e-02	2.184e-03	18.769	< 2e-16	***			
EXP2	-6.940e-04	4.799e-05	-14.461	< 2e-16	***			
WKS	4.599e-03	1.103e-03	4.168	3.14e-05	***			
0CC	-1.386e-01	1.509e-02	-9.184	< 2e-16	***			
SOUTH	-7.618e-02	1.259e-02	-6.052	1.56e-09	***			
SMSA	1.436e-01	1.211e-02	11.861	< 2e-16	***			
MS	6.919e-02	2.070e-02	3.343	0.000837	***			
FEM	-3.819e-01	2.532e-02	-15.080	< 2e-16	***			
UNION	9.402e-02	1.300e-02	7.235	5.52e-13	***			
Signif.	codes: 0	'***' 0.001	·**' 0.0	01 '*' 0.0	95'.'	0.1	''1	

Residual standard error: 0.3529 on 4150 degrees of freedom Multiple R-squared: 0.9972, Adjusted R-squared: 0.9972 F-statistic: 9.96e+04 on 15 and 4150 DF, p-value: < 2.2e-16

イロト 不得 トイヨト イヨト 二日

Two Ways of Testing Hypotheses

```
> suppressMessages(library(car))
> suppressMessages(library(sandwich))
> # separate male and female categories
> data <- data %>% mutate(MALE = ifelse(FEM --- 1, 0, 1))
> reg 5 <- lm(LWAGE ~ ED + EXP + EXP2 + WKS + OCC + SOUTH + SMSA
             + MS + FEM + MALE + UNION -1, data = data)
> linearHypothesis(reg_5, c("FEM = MALE"),
                  vcov = vcovHC(reg_5, type = "HC1"))
Linear hypothesis test
Hypothesis:
EEM - MALE = 0
Model 1: restricted model
Model 2: LWAGE ~ ED + EXP + EXP2 + WKS + OCC + SOUTH + SMSA + MS + FEM +
   MALE + UNION - 1
Note: Coefficient covariance matrix supplied.
  Res Df Df
                F Pr(>F)
1 4155
2 4154 1 263.33 < 2.2e-16 ***
Signif, codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
># now with intercept and different (Dut equivalent) hypothesis test 
> data < data KSW mutteQNME = ifelse(FHM = 1, 0, 1))
> reg.6 < lm(LNME = ED + EXP + EXP2 + NKS + OCC + SOUTH + SMSA
+ NS + FEM + NLOW, data = data)
> lineerhypothesis(reg.6, cCFEM = 0°), vcov = vcoHK(reg.6, type = "HCl"))
Lineer hypothesis test
```

```
Hypothesis:

FEM = 0

Model 1: restricted model

Model 2: LNAGE ~ ED + EXP + EXP2 + WKS + OCC + SOUTH + SMSA + MS + FEM +

UNION

Note: Coefficient covariance matrix supplied.

Res.DF Df F Pr(>F)

1 4155

2 4154 1 263.33 < 2.2e-16 ***
```

イロト 不得 トイヨト イヨト

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

- We know how to compute standard errors on our coefficients, but sometimes we are interested in *functions of those statistics*
- For example, if we have linear and quadratic terms of experience $(\beta_{exp}Exp_i + \beta_{exp2}Exp_i^2)$, then the model doesn't just have a simple "effect of experience".
- We might be interested in the effect of experience for somebody with 10 years of experience:

$$\frac{d \ln Wage_i}{dExp_i} \bigg|_{Exp_i = 10} = \beta_{exp} + 2\beta_{exp2}exp_i = \beta_{exp} + 20\beta_{exp2}$$

Delta Method II

• Suppose we have an asymptotic distribution for an estimator:

$$\sqrt{n}(b-\beta) \Rightarrow_d \mathcal{N}(0,\Sigma)$$
.

• Then the asymptotic distribution of a function of the estimator is

$$\sqrt{n}\left(g\left(\mathsf{b}\right)-g\left(\beta\right)
ight)\Rightarrow_{d}\mathcal{N}\left(\mathsf{0},\left(\nabla g\left(\beta
ight)
ight)'\Sigma\nabla g\left(\beta
ight)
ight),$$

where $\nabla g(\beta)$ is the gradient of $g(\beta)$:

$$abla g\left(oldsymbol{eta}
ight) = egin{pmatrix} rac{\partial g(oldsymbol{eta})}{\partialeta_1} \ rac{\partial g(oldsymbol{eta})}{\partialeta_2} \ dots \ rac{\partial g(oldsymbol{eta})}{\partialeta_2} \ dots \ rac{\partial g(oldsymbol{eta})}{\partialeta_K} \end{pmatrix}.$$

• Note that we can estimate $\nabla g(\beta)$ with $\nabla g(b)$.

(I) < (II) <

Numerical Bootstrap

• Given the the asymptotic distribution of a parameter estimate

b $\sim_{d} \mathcal{N}(eta, \Sigma)$,

we have an estimated density function \hat{f} . Let \hat{f} be the multivariate normal density with mean β and variance Σ .

- We can simulate the asymptotic distribution of g(b) by
 - Simulating draws b_m for m = 1, 2, ..., M from \hat{f}
 - Computing $g(b_m)$ for each draw
 - ► Then (g (b₁), g (b₂),..., g (b_M)) will be a simulated asymptotic distribution for g (b)
- This can be useful when you have code to compute g (·), but computing the derivative g (·) would be difficult. For example, when g (·) represents an complex behavioral (or equilibrium) model.

・ロト ・四ト ・ヨト ・ ヨト

Heterogeneous Effects

• When we have a model of the form

$$Y_i = \beta_0 + \beta_1 X_{1i} + \varepsilon_i$$

we're implicitly saying that the effect of X_1 is the same for all individuals.

- Often we would like to relax this, allowing different groups to have different slopes with respect to X_1 .
- This is easy as long as the group membership is observed in the data. We simply interact the regressor with dummy variables:

$$Y_i = \beta_0 + \beta_{0F} D_{Fi} + \beta_1 X_{1i} + \beta_2 X_{1i} D_{Fi} + \varepsilon_i$$

where D_{Fi} is a dummy variable for whether individual *i* is female. Note that we have allowed for the intercepts and slopes to vary by sex here.

A D F A B F A B F A B

Heterogeneous Effects in R

```
> data <- cbind(data, EDFEM-data$ED*data$FEM)
> reg_9 <- lm(LNAGE ~ ED + EDFEM + EXP + EXP2 + WKS + OCC + SOUTH + SMSA
+ MS + FEM + UNION, data = data)
> summary(reg_9)
```

- Here, we construct interactions manually, allowing education to have a different effect for males and females.
- Does education have significantly different effects for males and females?

Call:

lm(formula = LWAGE ~ ED + EDFEM + EXP + EXP2 + WKS + OCC + SOUTH SMSA + MS + FEM + UNION, data = data)

Residuals:

Min	1Q	Median	3Q	Max
-2.19425	-0.23540	-0.00569	0.23005	2.13574

Coefficients:

	Ectimate	Std Ennon	t value Pr(>It	15
(Intercept)	5.277e+00	7.212e-02	73.173 < 2e-	16 ***
ED	5.413e-02	2.689e-03	20.126 < 2e-	16 ***
EDFEM	2.520e-02	6.868e-03	3.669 0.0002	46 ***
EXP	4.053e-02	2.171e-03	18.668 < Ze-	16 ***
EXP2	-6.842e-04	4.776e-05	-14.324 < 2e-	16 ***
WKS	4.518e-03	1.088e-03	4.151 3.37e-	05 ***
OCC	-1.383e-01	1.472e-02	-9.396 < 2e-	16 ***
SOUTH	-7.375e-02	1.248e-02	-5.910 3.70e-	09 ***
SMSA	1.402e-01	1.206e-02	11.626 < 2e-	16 ***
MS	6.539e-02	2.061e-02	3.173 0.0015	20 **
FEM	-7.153e-01	9.235e-02	-7.745 1.19e-	14 ***
UNION	8.476e-02	1.296e-02	6.542 6.81e-	11 ***
Signif. cod	es: 0 '***'	0.001 '**'	0.01 '*' 0.05	·.' 0.1 · '

Residual standard error: 0.3519 on 4153 degrees of freedom Multiple R-squared: 0.4201, Adjusted R-squared: 0.4186 F-statistic: 273.5 on 11 and 4153 DF, p-value: < 2.2e-16

< □ > < □ > < □ > < □ > < □ > < □ >

1

Interactions with the : Operator

```
> reg_10 <- lm(LWAGE ~ ED + ED:FEM + EXP + EXP2 + WKS + OCC + SOUTH + SMSA
+ + MS + FEM + UNION, data = data)
> summary(reg_10)
```

• We can avoid creating the interactions mandually with the : operator.

Call:

lm(formula = LWAGE ~ ED + ED:FEM + EXP + EXP2 + WKS + OCC + SOUTH + SMSA + MS + FEM + UNION, data = data)

Residuals:

Min	1Q	Median	3Q	Max
-2.19425	-0.23540	-0.00569	0.23005	2.13574

Coefficients:

	Estimate	Std. Error	t value	Pr(>ltl)	
(Intercept)	5.277e+00	7.212e-02	73.173	< 2e-16	***
ED	5.413e-02	2.689e-03	20.126	< 2e-16	***
EXP	4.053e-02	2.171e-03	18.668	< 2e-16	***
EXP2	-6.842e-04	4.776e-05	-14.324	< 2e-16	***
WKS	4.518e-03	1.088e-03	4.151	3.37e-05	***
OCC	-1.383e-01	1.472e-02	-9.396	< 2e-16	***
SOUTH	-7.375e-02	1.248e-02	-5.910	3.70e-09	***
SMSA	1.402e-01	1.206e-02	11.626	< 2e-16	***
MS	6.539e-02	2.061e-02	3.173	0.001520	**
FEM	-7.153e-01	9.235e-02	-7.745	1.19e-14	***
UNION	8.476e-02	1.296e-02	6.542	6.81e-11	***
ED:FEM	2.520e-02	6.868e-03	3.669	0.000246	***
Signif. code	es: 0 '***'	0.001 '**'	0.01 "	*' 0.05'.	0.1 ' ' 1

Residual standard error: 0.3519 on 4153 degrees of freedom Multiple R-squared: 0.4201, Adjusted R-squared: 0.4186 F-statistic: 273.5 on 11 and 4153 DF, p-value: < 2.2e-16

イロト イボト イヨト イヨト

Interactions with the * Operator

 This version gives us the interacted and uninteracted terms with one term.

Call:

lm(formula = LWAGE ~ ED * FEM + EXP + EXP2 + WKS + OCC + SOUTH + SMSA + MS + UNION, data = data)

Residuals:

Min	1Q	Median	3Q	Max
-2.19425	-0.23540	-0.00569	0.23005	2.13574

Coefficients:

	Estimate	Std. Error	t value	Pr(>ltl)	
(Intercept)	5.277e+00	7.212e-02	73.173	< 2e-16	***
ED	5.413e-02	2.689e-03	20.126	< 2e-16	***
FEM	-7.153e-01	9.235e-02	-7.745	1.19e-14	***
EXP	4.053e-02	2.171e-03	18.668	< 2e-16	***
EXP2	-6.842e-04	4.776e-05	-14.324	< 2e-16	***
WKS	4.518e-03	1.088e-03	4.151	3.37e-05	***
000	-1.383e-01	1.472e-02	-9.396	< 2e-16	***
SOUTH	-7.375e-02	1.248e-02	-5.910	3.70e-09	***
SMSA	1.402e-01	1.206e-02	11.626	< 2e-16	***
MS	6.539e-02	2.061e-02	3.173	0.001520	**
UNION	8.476e-02	1.296e-02	6.542	6.81e-11	***
ED: FEM	2.520e-02	6.868e-03	3.669	0.000246	***
Signif. cod	es: 0 '***'	0.001 '**'	0.01 '	* 0.05 '	.'0.1''

Residual standard error: 0.3519 on 4153 degrees of freedom Multiple R-squared: 0.4201, Adjusted R-squared: 0.4186 F-statistic: 273.5 on 11 and 4153 DF, p-value: < 2.2e-16

(日)

 Image: Image:

1

Mincerian Regression: Sample Selection

- What happens when some of the data is missing in a non-random way?
- For example, let's imagine that the low-wage individuals drop out of the labor market.
- Note: this may already be happening in the data, but let's make it happen more.

Coefficients:

	Estimate	Std. Error	t value	Pr(>ltl)	
(Intercept)	5.609e+00	7.399e-02	75.805	< 2e-16	***
ED	4.882e-02	2.569e-03	19.005	< 2e-16	***
EXP	3.199e-02	2.177e-03	14.694	< 2e-16	***
EXP2	-5.169e-04	4.801e-05	-10.766	< 2e-16	***
WKS	2.827e-03	1.106e-03	2.556	0.0106	*
000	-9.138e-02	1.435e-02	-6.369	2.12e-10	***
SOUTH	-5.565e-02	1.213e-02	-4.588	4.63e-06	***
SMSA	1.118e-01	1.165e-02	9.596	< 2e-16	***
MS	9.364e-03	2.049e-02	0.457	0.6477	
FEM	-3.528e-01	2.625e-02	-13.439	< 2e-16	***
UNION	2.012e-02	1.255e-02	1.603	0.1090	
Signif. cod	es: 0 '***'	0.001 '**'	0.01 ''	*' 0.05'.	' 0.1'

Residual standard error: 0.3257 on 3833 degrees of freedom Multiple R-squared: 0.3148, Adjusted R-squared: 0.3131 F-statistic: 176.1 on 10 and 3833 DF, p-value: < 2.2e-16

 Recall that the coefficient on ED in the original regression was 5.654e-02

< □ > < □ > < □ > < □ > < □ > < □ >

1

Mincerian Regression: Measurement Error

- What happens if one of the variables of interest is measured with error?
- Let's say the the recorded education might be one year more or less than the person's actual education.
- Note: this may already be happening in the data, but let's make it happen more.

```
> notse - sample(-1:1,dsm(data)[1],repiace=T)
> data < - cbind(data, ED_NOTSY-data5ED + noise)
> reg.8 <- lm(NAGE - ED_NOTSY + EXP + NWS + OCC + SOUTH + SMSA
+ + WS + FEM + UNION, data = data)
> summory(reg.8)
```

Call: lm(formula = LWAGE ~ ED_NOISY + EXP + EXP2 + WKS + OCC + SOUTH + SMSA + MS + FEM + UNION, data = data)

Residuals:

Min	1Q	Median	3Q	Max
-2.23660	-0.23773	-0.00609	0.24132	2.09688

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 5.341e+00 7.094e-02 75.283 < 2e-16 *** ED NOTSY 4.967e-02 2.451e-03 20.262 < 2e-16 EXP 4.049e-02 2.188e-03 18.501 < 2e-16 EXP2 -6.862e-04 4.813e-05 -14.257 < 2e-16 WKS 4.618e-03 1.097e-03 4.209 2.62e-05 000 -1.600e-01 1.457e-02 -10.977 < 2e-16 SOUTH -7 690e-02 1 255e-02 -6 127 9 79e-10 SMSA 1.435e-01 1.214e-02 11.825 < 2e-16 6.591e-02 2.077e-02 3.174 0.00151 ** MS EEM -3.972e-01 2.533e-02 -15.683 < 2e-16 8.402e-02 1.295e-02 6.486 9.85e-11 *** UNTON Signif, codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.3547 on 4154 degrees of freedom Multiple R-squared: 0.4109, Adjusted R-squared: 0.4095 F-statistic: 289.7 on 10 and 4154 DF, p-value: < 2.2e-16

 Recall that the coefficient on ED in the original regression was 5.654e-02

< □ > < □ > < □ > < □ > < □ > < □ >

Econometrics I

Omitted Variables Bias, Revisited

• Suppose the econometrician only observes regressors X, but the true model is

$$\mathsf{y} = \mathsf{X}\boldsymbol{\beta} + \mathsf{z}\gamma + \boldsymbol{\varepsilon},$$

• The OLS estimator will equal

$$\mathsf{b}=\left(\mathsf{X}'\mathsf{X}
ight)^{-1}\mathsf{X}'\mathsf{y}=oldsymbol{eta}+\left(\mathsf{X}'\mathsf{X}
ight)^{-1}\mathsf{X}'\mathsf{z}\gamma+\left(\mathsf{X}'\mathsf{X}
ight)^{-1}\mathsf{X}'arepsilon$$

- The last term is mean zero given the strict exogeneity assumption.
- Note that the second term will not be zero if X and z are correlated; i.e. if $X'z \neq 0$.
- Implication: correlation between omitted variables and the observed regressors makes OLS biased.

Omitted Variables Bias II

• Using the Frisch-Waugh theorem, we can show that

$$E\left[b_{OLS,k}|\mathsf{X},\mathsf{z}\right] = \beta_{k} + \gamma\left(\frac{Cov\left(z,x_{k}|\mathsf{X}_{-k}\right)}{Var\left(x_{k}|\mathsf{X}_{-k}\right)}\right)$$

where X_{-k} refers to all the regressors besides x_k .

- Suppose positive correlation between regressor x_k and omitted variable z.
- Also suppose $\beta_k > 0$ and $\gamma > 0$ so both variables have positive effects.
- Let's compare the average value of the dependent variable for x_k = 0 and x_k = 1. Two things change between these points:
 - Dependent variable Y increases by β_k because of direct effect of x_k .
 - Value of z should be higher because of the positive correlation between x_k and z. Higher values of z also contribute to a higher dependent variable because γ > 0.

<ロト <部ト <注入 < 注入 = 二 =

Omitted Variables Bias in Mincerian Regression

• What sort of variables might the wage equation omit, and how would you expect them to affect the estimated coefficients?

```
Call:
lm(formula = LWAGE ~ ED + EXP + EXP2 + WKS + OCC + SOUTH + SMSA +
MS + FEM + UNION, data = data)
```

Residuals:

Min	10	Median	3Q	Max
-2.2034	-0.2379	-0.0071	0.2327	2.1380

Coefficients:

	Estimate	Std. Error	t value	Pr(>ltl)	
(Intercept)	5.245e+00	7.170e-02	73.153	< 2e-16	***
ED	5.654e-02	2.612e-03	21.644	< 2e-16	***
EXP	4.045e-02	2.174e-03	18.605	< 2e-16	***
EXP2	-6.811e-04	4.783e-05	-14.242	< 2e-16	***
WKS	4.485e-03	1.090e-03	4.115	3.94e-05	***
OCC	-1.405e-01	1.472e-02	-9.544	< 2e-16	***
SOUTH	-7.210e-02	1.249e-02	-5.773	8.37e-09	***
SMSA	1.390e-01	1.207e-02	11.513	< 2e-16	***
MS	6.736e-02	2.063e-02	3.265	0.0011	**
FEM	-3.892e-01	2.518e-02	-15.457	< 2e-16	***
UNION	9.015e-02	1.289e-02	6.993	3.13e-12	***
Signif. cod	es: 0 '***'	0.001 '**	0.01 '	*' 0.05 '	.'0.1''1

Residual standard error: 0.3524 on 4154 degrees of freedom Multiple R-squared: 0.4183, Adjusted R-squared: 0.4169 F-statistic: 298.7 on 10 and 4154 DF, p-value: < 2.2e-16

< □ > < □ > < □ > < □ > < □ > < □ >